Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genes (Basel) ; 14(10)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895198

RESUMO

Ewing's sarcoma is a rare type of cancer that forms in bones and soft tissues in the body, affecting mostly children and young adults. Current treatments for ES are limited to chemotherapy and/or radiation, followed by surgery. Recently, microRNAs have shown favourable results as latent diagnostic and prognostic biomarkers in various cancers. Furthermore, microRNAs have shown to be a good therapeutic agent due to their involvement in the dysregulation of various molecular pathways linked to tumour progression, invasion, angiogenesis, and metastasis. In this review, comprehensive data mining was employed to explore various microRNAs that might have therapeutic potential as target molecules in the treatment of ES.


Assuntos
Neoplasias Ósseas , MicroRNAs , Sarcoma de Ewing , Criança , Adulto Jovem , Humanos , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , MicroRNAs/genética , MicroRNAs/uso terapêutico
2.
ACS Omega ; 8(42): 39186-39193, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901509

RESUMO

The current investigation deals with the treatment of water pollution that is caused by the leaching of nickel ions from the metallurgical industry and new-energy batteries. Therefore, an eco-friendly treatment of nickel through the use of a composite of cotton stalk biochar with nanozerovalent copper has been presented in this investigation signifying the impact of zerovalent copper in enhancing the adsorption capacity of biochar for nickel adsorption. Thermogravimetric analysis data showed the adsorbent to be significantly stable in the higher thermal range, whereas transmission electron microscopy analysis confirmed the particles to be 27 nm and also showed the cubic geometry of the particles. A much closer scanning electron microscopy analysis shows the morphology of particles to be cubic in shape. Batch adsorption indicated a positive influence of pH increase on adsorption due to the electrostatic attraction between positive nickel ions and post point of zero charge (pHPZC) negative surface of copper biochar composite (pH > 5.5). A high adsorption rate was observed in the first 60 min, whereas adsorption increased with the increase in temperature from 303 to 318 K. Kinetic modeling confirmed the pseudo-first-order to fit best to the data. The apparent activation energy (11.96 kJ mol-1) is indicative of the chemical nature of the process. The adsorption data fitted well to the Langmuir adsorption model. The negative values of apparent ΔG° and the positive values of apparent ΔH° indicate the spontaneity and endothermicity of the process, respectively, whereas the positive values of apparent ΔS° point toward increased randomness during the process. Postadsorption XPS suggests the adsorption of nickel on the surface of biochar composites in the form of Ni(OH)2 and NiO(OH).

3.
Heliyon ; 9(10): e20976, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37886752

RESUMO

A hydrothermal technique was employed to synthesize Ni/Mg/Al ternary L.D.H.s modified with montmorillonite (NMA-MMT-LDHs). Many characterization methods, including X-ray diffraction (XRD), scanning electron microscopy (S.E.M.), Fourier transform infrared (FTIR), and Brunauer, Emmett, and Teller (B.E.T.), were used to assess the physiochemical properties of the produced analytes. Congo red and methylene blue were utilized as model dyes to treat textile waste with the synthesized analytes. The batch adsorption model was utilized to conduct the adsorption experiments under varying contact time, adsorbent dosage, and solution pH conditions. A pseudo-second-order kinetics and the Langmuir adsorption model control the adsorption process. The maximum monolayer adsorption capacities of C.R. and M.B. were determined to be 344 and 200 mg/g, respectively. As the quantity of dosage increased from the 0.01-0.04 g, the percent removal efficiency (%) increased from 75 to 87 % for S2-LDH, 84-88 % for S2-MMT, 86-93 % for S3-MMT, and 95-97% for S4-MMT for C.R. dye and 82-85 % for S2-LDH, 83-89 % for S2-MMT, 83-91 % for S3-MMT, and 84-92 % for S4-MMT for M.B. dye. The removal percentage of C.R. dye for adsorbents S2-LDH, S2-MMT, S3-MMT, and S4-MMT were 75 %, 84 %, 86 %, and 95 %, respectively and 82 %, 83 %, 83 %, and 85 %, respectively for the M.B. dye removal. The presence of MMT significantly increases the affinity of Ni/Mg/Al-LDHs (NMA-LDHs), and the designed production technique can be used to produce a variety of compositionally distinct adsorbent materials.

4.
Nanomaterials (Basel) ; 13(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446459

RESUMO

A basic urea technique was successfully used to synthesize Mg/Al-Layered double hydroxides (Mg/Al LDHs), which were then calcined at 400 °C to form Mg/Al-Layered double oxides (Mg/Al LDOs). To reconstruct LDHs, Mg/Al LDOs were fabricated with different feeding ratios of Ni by the co-precipitation method. After synthesis, the Ni/Mg/Al-layered double hydroxides (NMA-LDHs) with 20% and 30% Ni (S1 and S2) were roasted at 400 °C and transformed into corresponding Ni/Mg/Al-layered double oxides (NMA-LDOs) (S1a and S2b, respectively). The physiochemical properties of synthesized samples were also evaluated by various characterization techniques, such as X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR), and Brunauer, Emmett, and Teller (BET). The adsorption behavior of methyl orange (MO) onto the synthesized samples was evaluated in batch adsorption mode under varying conditions of contact time, adsorbent quantity, and solution pH. As the dosage amount increased from 0.01-0.04 g, the removal percentage of MO dye also increased from 83% to 90% for S1, 84% to 92% for S1a, 77% to 87% for S2, and 93% to 98% for S2b, respectively. For all of the samples, the adsorption kinetics were well described by the pseudo-second-order kinetic model. The equilibrium adsorption data were well fitted to both Langmuir and Freundlich models for methyl orange (MO). Finally, three adsorption-desorption cycles show that NMA-LDHs and NMA-LDOs have greater adsorption and reusability performance for MO dye, signifying that the design and fabrication strategy can facilitate the application of the natural hydrotalcite material in water remediation.

5.
Anal Chim Acta ; 1259: 341204, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100479

RESUMO

Local air and water should be first priority to understand the environment of any area. Different categories of contaminants behave like bottleneck situation in collection and analysis of data about abiotic factors for the understanding and resolving the environmental issues. In digital age the emerging nano technology enroll its role to meet the needs of hour. Due to increase in pesticides residues, the global health threats are on bloom because it inhibits the functionality of acetylcholinesterase (AChE) enzyme. Smart nanotechnology based system can tackle this issue and sense the pesticides residues in environment and vegetables as well. Here Au@ZnWO4 composite is reported, for accurate detection of pesticides residues in biological food and environmental samples. The fabricated unique nanocomposite was characterized by SEM, FTIR, XRD and EDX. The characterized material used for the electrochemical detection of organophosphate pesticide (chlorpyrifos), with 1 pM LoD at a signal to noise ratio of 3. The main concern of study is to help out in disease prevention, food safety and ecosystem protection.


Assuntos
Inseticidas , Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Praguicidas/análise , Acetilcolinesterase/química , Ecossistema , Inseticidas/análise
6.
Braz. j. biol ; 83: e242536, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339356

RESUMO

Abstract Chromium (VI) a highly toxic metal, a major constituent of industrial waste. It is continuously release in soil and water, causes environmental and health related issues, which is increasing public concern in developing countries like Pakistan. The basic aim of this study was isolation and screening of chromium resistant bacteria from industrial waste collected from Korangi and Lyari, Karachi (24˚52ʹ46.0ʺN 66˚59ʹ25.7ʺE and 24˚48ʹ37.5ʺN 67˚06ʹ52.6ʺE). Among total of 53 isolated strains, seven bacterial strains were selected through selective enrichment and identified on the basis of morphological and biochemical characteristics. These strains were designated as S11, S13, S17, S18, S30, S35 and S48, resistance was determined against varying concentrations of chromium (100-1500 mg/l). Two bacterial strains S35 and S48 showed maximum resistance to chromium (1600 mg/l). Bacterial strains S35 and S48 were identified through 16S rRNA sequence and showed 99% similarity to Bacillus paranthracis and Bacillus paramycoides. Furthermore, growth condition including temperature and pH were optimized for both bacterial strains, showed maximum growth at temperature 30ºC and at optimum pH 7.5 and 6.5 respectively. It is concluded that indigenous bacterial strains isolated from metal contaminated industrial effluent use their innate ability to transform toxic heavy metals to less or nontoxic form and can offer an effective tool for monitoring heavy metal contamination in the environment.


Resumo O cromo (VI), metal altamente tóxico, é um dos principais constituintes dos resíduos industriais. É liberado no solo e na água, causa problemas ambientais e de saúde de crescente preocupação pública em países em desenvolvimento como o Paquistão. O objetivo básico deste estudo foi o isolamento e a triagem de bactérias resistentes ao cromo de resíduos industriais coletados em Korangi e Lyari, Karachi (24˚52'46,0"N 66˚59'25,7"E e 24˚48'37,5"N 67˚06'52,6"E). Do total de 53 cepas isoladas, sete cepas bacterianas foram selecionadas por enriquecimento seletivo e identificadas com base em características morfológicas e bioquímicas. Essas cepas foram designadas como S11, S13, S17, S18, S30, S35 e S48, apresentaram alta resistência aos metais contra concentrações variáveis (100-1500 mg / l) de cromo. Já as cepas S35 e S48 foram identificadas por meio da sequência 16S rRNA e apresentaram 99% de similaridade com Bacillus paranthracis e Bacillus paramycoides. Além disso, as condições de crescimento incluindo temperatura e pH foram otimizadas e ambas as cepas bacterianas apresentaram crescimento máximo na temperatura de 30 ºC, enquanto seu pH ótimo foi observado em 7,5 e 6,5, respectivamente. Conclui-se que o potencial de resistência dessas bactérias resistentes ao cromo pode ser efetivamente utilizado na remoção de cromo de efluentes industriais contaminados. Técnicas de base biológica usando bactérias ajudarão a fornecer métodos mais baratos e ecológicos de remoção, recuperação e desintoxicação de cromo.


Assuntos
Cromo , Metais Pesados , Bacillus , Bactérias/genética , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Resíduos Industriais/análise
7.
Braz. j. biol ; 83: 1-8, 2023. tab, ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468901

RESUMO

Chromium (VI) a highly toxic metal, a major constituent of industrial waste. It is continuously release in soil and water, causes environmental and health related issues, which is increasing public concern in developing countries like Pakistan. The basic aim of this study was isolation and screening of chromium resistant bacteria from industrial waste collected from Korangi and Lyari, Karachi (24˚52ʹ46.0ʺN 66˚59ʹ25.7ʺE and 24˚48ʹ37.5ʺN 67˚06ʹ52.6ʺE). Among total of 53 isolated strains, seven bacterial strains were selected through selective enrichment and identified on the basis of morphological and biochemical characteristics. These strains were designated as S11, S13, S17, S18, S30, S35 and S48, resistance was determined against varying concentrations of chromium (100-1500 mg/l). Two bacterial strains S35 and S48 showed maximum resistance to chromium (1600 mg/l). Bacterial strains S35 and S48 were identified through 16S rRNA sequence and showed 99% similarity to Bacillus paranthracis and Bacillus paramycoides. Furthermore, growth condition including temperature and pH were optimized for both bacterial strains, showed maximum growth at temperature 30ºC and at optimum pH 7.5 and 6.5 respectively. It is concluded that indigenous bacterial strains isolated from metal contaminated industrial effluent use their innate ability to transform toxic heavy metals to less or nontoxic form and can offer an effective tool for monitoring heavy metal contamination in the environment.


O cromo (VI), metal altamente tóxico, é um dos principais constituintes dos resíduos industriais. É liberado no solo e na água, causa problemas ambientais e de saúde de crescente preocupação pública em países em desenvolvimento como o Paquistão. O objetivo básico deste estudo foi o isolamento e a triagem de bactérias resistentes ao cromo de resíduos industriais coletados em Korangi e Lyari, Karachi (24˚52’46,0”N 66˚59’25,7”E e 24˚48’37,5”N 67˚06’52,6”E). Do total de 53 cepas isoladas, sete cepas bacterianas foram selecionadas por enriquecimento seletivo e identificadas com base em características morfológicas e bioquímicas. Essas cepas foram designadas como S11, S13, S17, S18, S30, S35 e S48, apresentaram alta resistência aos metais contra concentrações variáveis (100-1500 mg / l) de cromo. Já as cepas S35 e S48 foram identificadas por meio da sequência 16S rRNA e apresentaram 99% de similaridade com Bacillus paranthracis e Bacillus paramycoides. Além disso, as condições de crescimento incluindo temperatura e pH foram otimizadas e ambas as cepas bacterianas apresentaram crescimento máximo na temperatura de 30ºC, enquanto seu pH ótimo foi observado em 7,5 e 6,5, respectivamente. Conclui-se que o potencial de resistência dessas bactérias resistentes ao cromo pode ser efetivamente utilizado na remoção de cromo de efluentes industriais contaminados. Técnicas de base biológica usando bactérias ajudarão a fornecer métodos mais baratos e ecológicos de remoção, recuperação e desintoxicação de cromo.


Assuntos
Bacillaceae/crescimento & desenvolvimento , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Cromo/toxicidade , Efluentes Industriais/análise
8.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469117

RESUMO

Abstract Chromium (VI) a highly toxic metal, a major constituent of industrial waste. It is continuously release in soil and water, causes environmental and health related issues, which is increasing public concern in developing countries like Pakistan. The basic aim of this study was isolation and screening of chromium resistant bacteria from industrial waste collected from Korangi and Lyari, Karachi (245246.0N 665925.7E and 244837.5N 670652.6E). Among total of 53 isolated strains, seven bacterial strains were selected through selective enrichment and identified on the basis of morphological and biochemical characteristics. These strains were designated as S11, S13, S17, S18, S30, S35 and S48, resistance was determined against varying concentrations of chromium (100-1500 mg/l). Two bacterial strains S35 and S48 showed maximum resistance to chromium (1600 mg/l). Bacterial strains S35 and S48 were identified through 16S rRNA sequence and showed 99% similarity to Bacillus paranthracis and Bacillus paramycoides. Furthermore, growth condition including temperature and pH were optimized for both bacterial strains, showed maximum growth at temperature 30ºC and at optimum pH 7.5 and 6.5 respectively. It is concluded that indigenous bacterial strains isolated from metal contaminated industrial effluent use their innate ability to transform toxic heavy metals to less or nontoxic form and can offer an effective tool for monitoring heavy metal contamination in the environment.


Resumo O cromo (VI), metal altamente tóxico, é um dos principais constituintes dos resíduos industriais. É liberado no solo e na água, causa problemas ambientais e de saúde de crescente preocupação pública em países em desenvolvimento como o Paquistão. O objetivo básico deste estudo foi o isolamento e a triagem de bactérias resistentes ao cromo de resíduos industriais coletados em Korangi e Lyari, Karachi (245246,0N 665925,7E e 244837,5N 670652,6E). Do total de 53 cepas isoladas, sete cepas bacterianas foram selecionadas por enriquecimento seletivo e identificadas com base em características morfológicas e bioquímicas. Essas cepas foram designadas como S11, S13, S17, S18, S30, S35 e S48, apresentaram alta resistência aos metais contra concentrações variáveis (100-1500 mg / l) de cromo. Já as cepas S35 e S48 foram identificadas por meio da sequência 16S rRNA e apresentaram 99% de similaridade com Bacillus paranthracis e Bacillus paramycoides. Além disso, as condições de crescimento incluindo temperatura e pH foram otimizadas e ambas as cepas bacterianas apresentaram crescimento máximo na temperatura de 30 ºC, enquanto seu pH ótimo foi observado em 7,5 e 6,5, respectivamente. Conclui-se que o potencial de resistência dessas bactérias resistentes ao cromo pode ser efetivamente utilizado na remoção de cromo de efluentes industriais contaminados. Técnicas de base biológica usando bactérias ajudarão a fornecer métodos mais baratos e ecológicos de remoção, recuperação e desintoxicação de cromo.

9.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500511

RESUMO

Background: Nickel stannate nanocomposites could be useful for removing organic and toxic water pollutants, such as methyl orange (MO). Aim: The synthesis of a nickel oxide-tin oxide nanocomposite (NiO-SnO2 NC) via a facile and economically viable approach using a leaf extract from Ficus elastica for the photocatalytic degradation of MO. Methods: The phase composition, crystallinity, and purity were examined by X-ray diffraction (XRD). The particles' morphology was studied using scanning electron microscopy (SEM). The elemental analysis and colored mapping were carried out via energy dispersive X-ray (EDX). The functional groups were identified by Fourier transform infrared spectroscopy (FTIR). UV-visible diffuse reflectance spectroscopy (UV-vis DRS) was used to study the optical properties such as the absorption edges and energy band gap, an important feature of semiconductors to determine photocatalytic applications. The photocatalytic activity of the NiO-SnO2 NC was evaluated by monitoring the degradation of MO in aqueous solution under irradiation with full light spectrum. The effects of calcination temperature, pH, initial MO concentration, and catalyst dose were all assessed to understand and optimize the physicochemical and photocatalytic properties of NiO-SnO2 NC. Results: NiO-SnO2 NC was successfully synthesized via a biological route using F. elastica leaf extract. XRD showed rhombohedral NiO and tetragonal SnO2 nanostructures and the amorphous nature of NiO-SnO2 NC. Its degree of crystallinity, crystallite size, and stability increased with increased calcination temperature. SEM depicted significant morphological changes with elevating calcination temperatures, which are attributed to the phase conversion from amorphous to crystalline. The elemental analysis and colored mapping show the formation of highly pure NiO-SnO2 NC. FTIR revealed a decrease in OH, and the ratio of oxygen vacancies at the surface of the NC can be explained by a loss of its hydrophilicity at increased temperatures. All the NC samples displayed significant absorption in the visible region, and a blue shift is seen and the energy band gap decreases when increasing the calcination temperatures due to the dehydration and formation of compacted large particles. NiO-SnO2 NC degrades MO, and the photocatalytic performance decreased with increasing calcination temperature due to an increase in the crystallite size of the NC. The optimal conditions for the efficient NC-mediated photocatalysis of MO are 100 °C, 20 mg catalyst, 50 ppm MO, and pH 6. Conclusions: The auspicious performance of the NiO-SnO2 NCs may open a new avenue for the development of semiconducting p-n heterojunction catalysts as promising structures for removing undesirable organic pollutants from the environment.


Assuntos
Compostos Azo , Nanocompostos , Compostos Azo/química , Nanocompostos/química , Catálise , Extratos Vegetais
10.
Biomed Res Int ; 2022: 3605054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420094

RESUMO

A simple process based on the dual roles of both magnesium oxide (MgO) and iron oxide (FeO) with boron (B) as precursors and catalysts has been developed for the synthesis of borate composites of magnesium and iron (Mg2B2O5-Fe3BO6) at 1200°C. The as-synthesized composites can be a single material with the improved and collective properties of both iron borates (Fe3BO6) and magnesium borates (Mg2B2O5). At higher temperatures, the synthesized Mg2B2O5-Fe3BO6 composite is found thermally more stable than the single borates of both magnesium and iron. Similarly, the synthesized composites are found to prevent the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) pathogenic bacteria on all the tested concentrations. Moreover, the inhibitory effect of the synthesized composite increases with an increase in concentration and is more pronounced against S. aureus as compared to E. coli.


Assuntos
Ferro , Magnésio , Magnésio/farmacologia , Boratos/farmacologia , Staphylococcus aureus , Escherichia coli , Bactérias
11.
Plant Dis ; 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040224

RESUMO

Papaya (Carica papaya L.) is grown widely in tropical and sub-tropical regions (Ahmed et al. 2008). In Pakistan, papaya production and consumption are increasing due to its medicinal, nutritional, pharmacological properties and a rich source of antioxidant, vitamin B, potassium, and magnesium. In November 2021, 26 to 35% incidence of fruit rot was observed in 15 fields of Lahore, a district of Punjab, Pakistan. Affected fruit developed circular, gray-to-brown lesions (8 to 10 mm in diameter) with white mycelia forming on the surface of lesions. In advanced stages of the disease, the lesions enlarged in size and led to the rot of entire fruit. To isolate the causal agent, small tissue segments (1 to 2 cm) were excised from 15 symptomatic fruit, surface disinfected with 1% NaClO for 30 s, rinsed with sterile distilled water three times, air dried in laminar flow hood, aseptically transferred onto petri dishes containing potato dextrose agar (PDA) and incubated at 25℃ for 5 days with a 12-h photoperiod. Eleven isolates were obtained that produced white mycelia on PDA. Flask-shaped, dark-pigmented pycnidia formed on PDA after 18 days of incubation at 25°C, which produced α-conidia measuring 4.1 to 7.2 × 1.5 to 3.0 µm and ß-conidia measuring 16.4 to 25.5 × 1.0 to 1.6 µm (n = 40). α-conidia were hyaline, fusiform, and single-celled, whereas ß-conidia were one-celled, hyaline, and filiform. The morphological characteristics of the fungus were compatible with a Diaporthe species (Gomes et al. 2013). The internal transcribed spacer region (ITS) (OM865414 and OM865415), translation elongation factor 1-alpha (tef1) (OM831226 and OM831229), and histone H3 (HIS) (OM831227 and OM831228) of two representative isolates (UO02 and UO03) were amplified and sequenced using primers ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Carbone and Kohn 1999), and CYLH3F/H3-1b (Chaisiri et al. 2021), respectively. Blast searches showed 99 to 100% nucleotide identity with reference sequences of several Diaporthe amygdali deposited in NCBI GenBank, including the ex-type strain CBS 126679. A pathogenicity test was also performed on harvested fruit of papaya cv. Bombay using isolates UO02 and UO03. Ten mature and healthy papaya fruit were surface disinfected with 1% NaClO solution for 1 min, rinsed with sterile water and dried. Each fruit was wounded twice with a sterile scalpel (4 to 5 mm incision on the peel) and a 5-mm agar disc with mycelia of each isolate was separately placed in each wound. The wounds were wrapped with Parafilm following inoculation. Sterile PDA plugs were used in separate inoculated controls. All wounds were sealed with parafilm. All fruit were maintained in plastic boxes at 25°C with 80% relative humidity. After 6 days of incubation, rot symptoms similar to those appearing on naturally-infected fruit were observed on inoculated fruits while controls remained asymptomatic. The experiment was repeated twice with similar findings. Diaporthe amygdali was re-isolated (100%) from inoculated fruit and the pathogen identification was confirmed by morphological and molecular analysis, thus fulfilling Koch's postulates. Previously, the pathogen has been reported as a causal agent of canker and shoot blight disease in other countries (Ko and Sun, 2003; Beluzan et al. 2021). To our knowledge, this is the first report of D. amygdali on papaya in Punjab Province of Pakistan. Papaya is an emerging fruit crop in Punjab Province and it is important to further investigate the presence of this pathogen in other papaya orchards of the province since D. amygdali may cause rapid disease outbreaks resulting in severe losses.

12.
ACS Appl Mater Interfaces ; 14(7): 9292-9306, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35143164

RESUMO

Sulfur hexafluoride (SF6) is widely used in electrical equipment because of its excellent insulating properties. The type of internal fault in the power system can be identified by detecting SF6 decomposition products. In this manuscript, we report a novel sensing material based on octahedral Co3O4-modified NiSnO3 nanofibers synthesized via a two-step process based on electrospinning followed by a hydrothermal method for detecting the SF6 decomposition products. From the evaluation of various characterization techniques, it was determined that the Co3O4 octahedra adhered inflexibly to the surface of the NiSnO3 nanofibers, which consist of smaller particles and provide a huge surface area for the adsorption of an enormous amount of gas species. Planar-type chemical gas sensors were devised, and their gas detecting performance against SF6 decomposition products was systematically investigated. A comparison of the sensitivity properties of different amounts of charged Co3O4 octahedra in NiSnO3 nanofibers shows that the S-2-based Co3O4@NiSnO3 composite has a high selectivity for 100 ppm SO2F2 gas with a high sensing response of 22.5 at a relatively low temperature of 50 °C with a moderate response/recovery interval (∼200/∼268 s) and a low detection limit (5 ppm) over other interfering gases, such as SOF2, SO2, and H2S. Interestingly, the sensing properties of the fabricated sensors based on the Co3O4@NiSnO3 composites for the SO2F2 gas were improved in terms of lower operating temperatures, higher gas responses, and mild response/recovery intervals, which could be attributed to the unique microstructure effect, the catalytic influence of Co3O4 octahedra, and the creation of p/n junctions to increase the charge transfer and diffusion rate within the catalytic assembly of the sensor materials. This work highlights the importance of the heterostructure design in the construction of high-performance gas sensors for the real-time detection of SF6 decomposition products.

13.
IEEE Trans Cybern ; 52(12): 13809-13820, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34591776

RESUMO

Due to the popularity of social media and online fora, such as Twitter, Reddit, Facebook, and Wechat, short text stream clustering has gained significant attention in recent years. However, most existing short text stream clustering approaches usually work on static data and tend to cause a "term ambiguity" problem due to the sparse word representation. Beyond, they often exploit short text streams in a batch way and are difficult to find evolving topics in term-changing subspaces. In this article, we propose an online semantic-enhanced graphical model for evolving short text stream clustering (OSGM), by exploiting the word-occurrence semantic information and dynamically maintaining evolving active topics in term-changing subspaces in an online way. Compared to the existing approaches, our online model is not only free of determining the optimal batch size but also lends itself to handling large-scale data streams efficiently. It is also able to handle the "term ambiguity" problem without incorporating features from external resources. More importantly, to the best of our knowledge, it is the first work to extract evolving topics in term-changing subspaces automatically in an online way. Extensive experiments demonstrate that the proposed model yields better performance compared to many state-of-the-art algorithms on both synthetic and real-world datasets.


Assuntos
Semântica , Mídias Sociais , Humanos , Análise por Conglomerados , Algoritmos
14.
IEEE Trans Cybern ; 52(11): 11373-11384, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34033560

RESUMO

In the context of streaming data, learning algorithms often need to confront several unique challenges, such as concept drift, label scarcity, and high dimensionality. Several concept drift-aware data stream learning algorithms have been proposed to tackle these issues over the past decades. However, most existing algorithms utilize a supervised learning framework and require all true class labels to update their models. Unfortunately, in the streaming environment, requiring all labels is unfeasible and not realistic in many real-world applications. Therefore, learning data streams with minimal labels is a more practical scenario. Considering the problem of the curse of dimensionality and label scarcity, in this article, we present a new semisupervised learning technique for streaming data. To cure the curse of dimensionality, we employ a denoising autoencoder to transform the high-dimensional feature space into a reduced, compact, and more informative feature representation. Furthermore, we use a cluster-and-label technique to reduce the dependency on true class labels. We employ a synchronization-based dynamic clustering technique to summarize the streaming data into a set of dynamic microclusters that are further used for classification. In addition, we employ a disagreement-based learning method to cope with concept drift. Extensive experiments performed on many real-world datasets demonstrate the superior performance of the proposed method compared to several state-of-the-art methods.


Assuntos
Algoritmos , Análise por Conglomerados
15.
Braz J Biol ; 83: e242536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495143

RESUMO

Chromium (VI) a highly toxic metal, a major constituent of industrial waste. It is continuously release in soil and water, causes environmental and health related issues, which is increasing public concern in developing countries like Pakistan. The basic aim of this study was isolation and screening of chromium resistant bacteria from industrial waste collected from Korangi and Lyari, Karachi (24˚52'46.0"N 66˚59'25.7"E and 24˚48'37.5"N 67˚06'52.6"E). Among total of 53 isolated strains, seven bacterial strains were selected through selective enrichment and identified on the basis of morphological and biochemical characteristics. These strains were designated as S11, S13, S17, S18, S30, S35 and S48, resistance was determined against varying concentrations of chromium (100-1500 mg/l). Two bacterial strains S35 and S48 showed maximum resistance to chromium (1600 mg/l). Bacterial strains S35 and S48 were identified through 16S rRNA sequence and showed 99% similarity to Bacillus paranthracis and Bacillus paramycoides. Furthermore, growth condition including temperature and pH were optimized for both bacterial strains, showed maximum growth at temperature 30ºC and at optimum pH 7.5 and 6.5 respectively. It is concluded that indigenous bacterial strains isolated from metal contaminated industrial effluent use their innate ability to transform toxic heavy metals to less or nontoxic form and can offer an effective tool for monitoring heavy metal contamination in the environment.


Assuntos
Cromo , Metais Pesados , Bacillus , Bactérias/genética , Biodegradação Ambiental , Resíduos Industriais/análise , RNA Ribossômico 16S/genética
16.
Microsc Res Tech ; 84(11): 2598-2606, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34057266

RESUMO

In this study, a composite of zerovalent copper-biochar was investigated for its ability to remove lead from water. The prepared material was characterized by using scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), X-ray diffractomter (XRD), and X-ray photoelectron spectroscopy (XPS). The pH effect on adsorption of lead was investigated within the range of 2-8 and the effect of temperature was studied at 303, 308, 313, and 318 K. The kinetics of lead adsorption on biochar composite was evaluated and the equilibrium time of 12 hr was established. To further evaluate the nature of adsorption, Langmuir model was tested and the adsorption capacities were evaluated for lead adsorption on the surface of copper biochar composite. The activation energy, entropy, and enthalpy values indicated the adsorption phenomenon to be chemisorptive and spontaneous in nature. Comparison of adsorption capacities with the reported adsorbents in the literature concluded zerovalent copper-biochar composite to be an efficient adsorbent for the removal of lead in the experimental conditions under study. RESEARCH HIGHLIGHTS: Highly efficient composite of zerovalent copper with biochar was synthesized for lead adsorption. XPS and XRD shows the presence of zerovalent copper in the biochar composite. pH and temperature were the main governing factors in the adsorption process. Adsorption capacity for lead is higher than many of the reported adsorbents.

17.
PLoS One ; 16(5): e0250902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945542

RESUMO

Sucking insects require a surface of plants on which the legs and the eggs of insects will adhere and to which insect mouthparts will access. The primary plant protection against insects is their surface property, which hinders the attachment of the insect's legs and eggs. The epicuticular waxes chemistry influences the fine structure of the cuticular surface. In current study, an attempt was made to investigate the variation of chemical compounds in epicuticular waxes of four cotton species that classify them resistant or susceptible i.e., Gossypium abroreum, G. hirsutum, G. arboreum wax deficient mutant (GaWM3) and G. harknessi which were evaluated for their interaction with whitefly and CLCuV transmission. Gossypium hirsutum an insect and CLCuV susceptible cotton variety, was found to have four compounds namely Trichloroacetic acid, hexadecylester, P-xylenolpthalein, 2-cyclopentene-1-ol, 1-phenyl-and Phenol, 2,5-bis [1,1- dimethyl] which could interact with chitin of whitefly while only two compounds in Gossypium arboreum an insect and CLCuV resistant cotton variety could interact with chitin of whitefly. Similarly, GaWM3 and Gossypium harkasnessi were found to have only a single compound. Number of whiteflies found on leaves of G. hirsutum was much higher as compared to other cotton species. Keeping this fact in mind a wax biosynthetic gene CER3, from Arabidopsis thaliana was transformed into G. hirsutum and the plants were evaluated for their resistance against whitefly and CLCuV transmission. In microscopic analysis transgenic plants clearly showed higher amounts of leaf waxes as compared to non-transgenics. The least whitefly population and CLCuV titer of <10,000 units was found in transgenic plants compared to non-transgenic cotton where it was ≈4.5X106 units that confirmed the role of wax in insect interaction and ultimately to CLCuV transmission. This study provides novel insight on wax related compounds involved in cotton-whitefly interaction, which potentially can help in developing more efficient control strategies for this destructive pest.


Assuntos
Gossypium/genética , Hemípteros/genética , Ceras/metabolismo , Animais , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética
18.
Nanotechnology ; 32(30)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33848992

RESUMO

Sulfuryl fluoride (SO2F2) is one of the ideal decomposition components of sulfur hexafluoride (SF6), which is widely used as an insulating and arc extinguishing medium in gas-insulated switchgear. To detect the decomposition component of SF6at room temperature, the use of SO2F2is still a challenge. In this work, we have successfully fabricated TiO2nanofibers and nickel sulfate (NiSO4NPs) via simple electrospun and hydrothermal methods, followed by calcination process to improve the sensing performance. Metal oxide semiconductor materials (MOSs) are widely used in gas sensing applications due to their superior performance and fast recovery speed. Although the performance of our TiO2/NiSO4composite nanofiber sensor decreases at higher temperatures, it shows an excellent response to target gasses at room temperature. Ni-decoration on the outer surface of the nanofibers could maximize the sensing response of 100 ppm SO2F2by up to 189% at room temperature, showing that the TiO2/NiSO4composite nanofibers are 2.5 times superior to the pure TiO2nanofiber sensors. Thus, the approach for this novel composite nanofiber-based material is promising for the fabrication of superior gas sensors for decomposition of SF6.

19.
Microsc Res Tech ; 84(10): 2372-2380, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33880810

RESUMO

The antimicrobial drug resistance is increasing with the passage of time due to wide and improper use of broad spectrum drugs and the demand of the new drug increases day by day. The present study was planned to encounter this problem by synthesizing titanium dioxide nanoparticles (TiO2 NPs) by an eco-friendly route using Cannabis sativa leaves extract. The synthesized TiO2 NPs were calcined at 100, 300, 600, and 900°C in a muffle furnace. The crystallographic parameters were studied by X-ray diffraction and the phase transition occurred above 600°C. The surface morphology of the synthesized samples was studied by transmission electron microscopy (TEM), and scanning electron microscopy (SEM) and the particle size was measured through the ImageJ software. The elemental composition and purity of all the samples were studied by performing energy dispersive X-ray (EDX). All the synthesized TiO2 NPs were tested for their antimicrobial effect against Gram-positive and Gram-negative bacteria using the agar well diffusion method. The activity was found higher against Gram-negative bacteria and compared to Gram-positive bacteria.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Extratos Vegetais , Titânio , Difração de Raios X
20.
Comput Methods Programs Biomed ; 203: 106044, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33756187

RESUMO

BACKGROUND AND OBJECTIVE: Arterial diseases would lead to several serious disorders in the cardiovascular system such as atherosclerosis. These disorders are mainly caused by the presence of fatty deposits, cholesterol and lipoproteins inside blood vessel. This paper deals with the analysis of non-Newtonian magnetic blood flow in an inclined stenosed artery. METHODS: The Casson fluid was used to model the blood that flows under the influences of uniformly distributed magnetic field and oscillating pressure gradient. The governing fractional differential equations were expressed using the Caputo Fabrizio fractional derivative without singular kernel. RESULTS: The analytical solutions of velocities for non-Newtonian model were then calculated by means of Laplace and finite Hankel transforms. These velocities were then presented graphically. The result shows that the velocity increases with respect to Reynolds number and Casson parameter, while decreases when Hartmann number increases. CONCLUSIONS: Casson blood was treated as the non-Newtonian fluid. The MHD blood flow was accelerated by pressure gradient. These findings are beneficial for studying atherosclerosis therapy, the diagnosis and therapeutic treatment of some medical problems.


Assuntos
Aterosclerose , Modelos Cardiovasculares , Artérias , Velocidade do Fluxo Sanguíneo , Constrição Patológica , Hemodinâmica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...